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Abstract. Wu utilized the general weighted moments estimator (GWMEs) of the
scale parameter of the one-parameter exponential distribution to construct the prediction
intervals of the future observations under multiply type II censoring. Since two-parameter
exponential distribution has better application for fitting data than one-parameter expo-
nential distribution, Wu proposed the general weighted moments estimator (GWMEs)
of the scale parameter for two-parameter exponential distribution and claimed that the
proposed estimator outperforms the other 14 estimators including 12 weighted moments
estimators proposed by Wu and Yang and approximate maximum likelihood estimator
(AMLE) by Balakrishnan and the best linear unbiased estimator (BLUE) by Balasubra-
manian and Balakrishnan in terms of the exact mean squared errors (MSEs) in most
cases. For two-parameter exponential distribution, we use the GWMEs to construct the
pivotal quantities for the use of the prediction intervals of future observation. At last, one
real life example is given to demonstrate the prediction intervals based on the GWMEs.
Keywords: Type II multiply censored sample, Exponential distribution, General weight-
ed moments estimator, Prediction interval

1. Introduction. In most literature of reliability, the exponential distribution is widely
used as a model of lifetime data. There are many applications of exponential distribution
in the analysis of reliability and the life test experiments. See for example, Johnson et
al. [4]. The failure time Y follows a two-parameter exponential distribution if the proba-
bility density function (p.d.f.) of Y is given by f(y) = 1

θ
exp

(
−y−µ

θ

)
, y ≥ 0, µ > 0, θ > 0,

where µ is the location parameter and θ is the scale parameter. The location parameter
of two-parameter exponential distributions are so-called threshold values or “guaranteed
time” parameters in reliability and engineering. In dose-response experiments, this dis-
tribution is generally used to model the effective duration of a drug, where the location
parameter µ is regarded as the guaranteed effective duration and the scale parameter θ is
referred as the mean effective duration in addition to µ.

In life testing experiments, the experimenters may not be able to obtain the lifetimes of
all items that are put on test due to the artificial mistakes or for implementing some pur-
poses of experimental designs. Suppose that n items are put on the life test and the first r,
middle l and the last s are unobserved or missing, this type of censoring is called the type II
multiply censoring. Wu and Yu [10] proposed the simultaneous confidence intervals for all
distances from the extreme populations for two-parameter exponential populations based
on the multiply type II censored samples. Wu [9] proposed the prediction interval for the
future observation for one-parameter exponential distribution based on type II multiply
censored sample. The two-parameter exponential distribution has better application for
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fitting data than one-parameter exponential distribution (See Maurya et al. [6] for the
application of two-parameter exponential distribution). For two-parameter exponential
distribution, Wu [8] proposed some general WMEs by assigning a single weight to each
observation instead of considering only two weights in Wu and Yang [7] under multiply
type II censoring. The simulation comparison results show that the GWMEs outperform
the 12 weighted moments estimators proposed by Wu and Yang [7] and approximate
maximum likelihood estimator (AMLE) by Balakrishnan [2] and the best linear unbiased
estimator (BLUE) by Balasubramanian and Balakrishnan [3] in terms of the exact mean
squared errors (MSEs) in most cases for exponential distribution. Since GWMEs perform
better than other 14 methods, we utilized the GWMEs proposed in Wu [8] to construct
a pivotal quantity and use it to build the prediction interval of future observation. The
structure of this research is organized as follows. In Section 2, the general WME for the
two-parameter exponential distribution proposed in Wu [8] is defined. In Section 3, we
proposed the prediction intervals of future observations based on our proposed pivotal
quantities. The percentiles of the proposed pivotal quantities are listed for use in Table
1. One real life example to illustrate the proposed intervals is given in Section 4. At last,
the conclusion is discussed in Section 5.

2. The General Weighted Moments Estimation of the Scale Parameter of the
Two-Parameter Exponential Distribution. Suppose that the lifetimes Y follows a
two-parameter exponential distribution with p.d.f. given by f(y) = 1

θ
exp

(
−y−µ

θ

)
, y ≥ 0,

µ > 0, θ > 0, where µ is the location parameter and θ is the scale parameter. Let
Y(r+1) < · · · < Y(r+k) < Y(r+k+l+1) < · · · < Y(n−s) be the available type II multiply
censored sample from the above distribution.
The general WME to estimate the scale parameter θ is defined as follows.
The general WME GWME ∗ is constructed by taking the weighted sum of the sub-

traction of the r + 1 ordered observation from each observation in order to remove the
influence of the unknown location parameter. There are n − r − l − s − 1 weights
W ∗

r+2, . . . ,W
∗
r+k, . . . ,W

∗
r+k+l+1, . . . ,W

∗
n−s assigned for GWME ∗ and the general WME is

defined as GWME ∗ = θ̃∗ = W ∗
r+2Y

∗
(r+2) + · · · +W ∗

r+kY
∗
(r+k) +W ∗

r+k+l+1Y
∗
(r+k+l+1) + · · · +

W ∗
n−sY

∗
(n−s) == W ∗

∼
Y ∗
∼
, where W ∗

∼
=

[
W ∗

r+2, . . . ,W
∗
r+k,W

∗
r+k+l+1, . . . ,W

∗
n−s

]T
, and Y ∗

∼
=(

Y ∗
(r+2), . . . , Y

∗
(n−s)

)
, where Y ∗

(i) = Y(i)−Y(r+1), i = r+2, . . . , r+ k, r+ k+ l+1, . . . , n− s.

Know that the mean of Y ∗
(i)

/
θ is a∗i = E

(
Y ∗
(i)

/
θ
)
=

∑i
j=r+2

1
n−j+1

and the covariance

of Y ∗
(i)

/
θ and Y ∗

(j)

/
θ is b∗i,j = Cov

(
Y ∗
(i)

/
θ, Y ∗

(j)

/
θ
)

=
∑i

j=r+2
1

(n−j+1)2
, i ≤ j, (i, j) ∈

{r + 2, . . . , r + k, r + k + l + 1, . . . , n− s}.
The weights W ∗

∼
=

[
W ∗

r+2, . . . ,W
∗
r+k,W

∗
r+k+l+1, . . . ,W

∗
n−s

]T
are determined so that the

MSE of the proposed general WME is minimized. From Wu [8], the optimal weights are
W ∗T

∼
= A∗−1 a∗

∼
, where

A∗ =


b∗r+2,r+2 + a∗2r+2 b∗r+2,r+3 + a∗r+2a

∗
r+3 . . . b∗r+2,n−s + a∗r+2a

∗
n−s

b∗r+2,r+3 + a∗r+2a
∗
r+3 b∗r+3,r+3 + a∗2r+3 . . . b∗r+3,n−s + a∗r+3a

∗
n−s

...
. . .

...
...

b∗r+2,n−s + a∗r+2a
∗
n−s · · · · · · b∗n−s,n−s + a∗2n−s


and a∗ =

(
a∗r+2, . . . , a

∗
r+k, a

∗
r+k+l+1, . . . , a

∗
n−s

)
which is the mean vector of the random

vector Y ∗
∼

/
θ. The general WME (GWME) with minimum MSE is obtained as
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θ̃∗ = W ∗T
∼

Y ∗
∼

= A∗−1 a∗
∼
Y ∗
∼

(1)

The minimum MSE of GWME is

MSE
(
θ̃∗
)
=

(
W ∗T

∼
B∗ W ∗

∼
+
(
W ∗T

∼
a∗ − 1

)2
)
θ2 (2)

where B∗ = [b∗i,j]i=r+2,...,r+k,r+k+l+1,...,n−s,j=r+2,...,r+k,r+k+l+1,...,n−s is the covariance matrix

of the random vector Y ∗
∼

/
θ.

3. Prediction Intervals of Future Observation. In order to predict the future ob-
servation, the pivotal quantity is considered as U = (Y(j) − Y(n−s))

/
θ̃∗, n − s < j ≤ n

based on the GWME θ̃∗ defined in (1). Since
Y(1)

θ
, . . . ,

Y(n)

θ
are the n order statistics from

a standard exponential distribution and θ̃∗

θ
=

W ∗T
∼

Y ∗
∼

θ
is a linear combination of n order

statistics from a standard exponential distribution, the distribution of pivotal quantity

U =
(

Y(j)

θ
− Y(n−s)

θ

)/
θ̃∗

θ
is independent of θ, n− s < j ≤ n. Let U(δ;n, j, r, k, l, s) be the

δ percentile of the distribution of U satisfying P (U ≤ U(δ;n, j, r, k, l, s)) = δ.
Make use of the pivotal quantity, the prediction interval of future observations Y(j), n−

s < j ≤ n is proposed in the following theorem.

Theorem 3.1. For type II multiply censored sample Y(r+1) < · · · < Y(r+k) < Y(r+k+l+1) <

· · · < Y(n−s), the prediction interval of Y(j), n−s <j ≤ n is
(
Y(n−s)+U

(
α
2
;n, j, r, k, l, s

)
θ̃∗,

Y(n−s) + U
(
1− α

2
;n, j, r, k, l, s

)
θ̃∗
)
.

Proof: Observe that 1−α = P
(
U
(
α
2
;n, j, r, k, l, s

)
≤

(
Y(j)−Y(n−s)

θ̃∗

)
≤ U

(
1− α

2
;n, j, r,

k, l, s) θ̂
)
= P

(
Y(n−s) + U

(
α
2
;n, j, r, k, l, s

)
θ̃∗≤Y(j)≤Y(n−s) + U

(
1− α

2
;n, j, r, k, l, s

)
θ̃∗
)
.

�
Since the exact distribution of U is too hard to derive algebraically, the δ percentile

of the distribution of U is obtained based on Monte Carlo simulation. Moreover, all the
simulations were run with the aid of AbSoft Fortran Inclusive of IMSL [1]. In the simula-
tion, 100,000 replicates are used to compute the percentiles of U for each combination of
n, r, k, l, s, j, where j = n−s+1, . . ., n. Due to the limitation of the number of pages, only
part of the percentiles of U are given in Table 1, for δ = 0.005, 0.010, 0.025, 0.050, 0.100,
0.900, 0.950, 0.975, 0.990, 0.995 under n = 12, 24 (see Table 1). Any specific percentile
U(δ;n, j, r, k, l, s) for any censoring scheme (n, r, k, l, s) for the jth future observation,
j = n− s+ 1, . . ., n, can be obtained by the software program provided by the author.

4. Example. We use the example of times to breakdown of an insulating fluid between
electrodes recorded at five different voltages (Nelson [6]) in this section to demonstrate
the prediction interval of future observations. Such a distribution of time to break-
down is usually assumed to be exponentially distributed in engineering theory. We
choose 35 kV, and the multiple type II censored data with n = 12, r = 2, k = 3,
l = 1 and s = 5 is −,−, 41, 87, 93,−, 116,−,−,−,−,−. The weights are 0.23568,
0.12544, 0.19776, 0.8058 and the estimated scale parameter is θ̃∗ = W ∗

r+2Y
∗
(r+2) + · · · +

W ∗
r+kY

∗
(r+k)+W ∗

r+k+l+1Y
∗
(r+k+l+1)+· · ·+W ∗

n−sY
∗
(n−s) = W ∗

4

(
Y ∗
(4) − Y ∗

(3)

)
+W ∗

5

(
Y ∗
(5) − Y ∗

(3)

)
+

7∗5

(
Y ∗
(7) − Y ∗

(3)

)
= 0.20047 ∗ 46 + 0.31604 ∗ 52 + 1.28774 ∗ 75 = 122.2362.

Using Theorem 3.1, the 90% and 95% prediction intervals for Y(8), Y(9), Y(10), Y(11), Y(12)

are obtained in Table 2.
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Table 1. The δ percentile of the pivotal quantity U =
(
Y(j) − Y(n−s)

) /
θ̃∗

and P (U ≤ U(δ;n, j, r, k, l, s)) = δ

δ
n r k l s j 0.005 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990 0.995
12 2 5 2 2 11 0.0028 0.0056 0.0143 0.0293 0.0605 1.5646 2.1479 2.7893 3.7520 4.5520
12 2 5 2 2 12 0.0803 0.1147 0.1872 0.2767 0.4212 4.1812 5.4994 6.9563 9.0850 10.8650
12 3 5 2 1 12 0.0057 0.0115 0.0290 0.0591 0.1216 3.1415 4.3191 5.6124 7.5610 9.1770
12 3 5 1 2 11 0.0030 0.0059 0.0149 0.0302 0.0623 1.6416 2.2760 2.9804 4.0670 4.9960
12 3 5 1 2 12 0.0797 0.1154 0.1902 0.2827 0.4294 4.4029 5.8598 7.4686 9.8840 11.9630
12 2 5 3 1 12 0.0057 0.0114 0.0286 0.0580 0.1202 3.0407 4.1567 5.3696 7.1270 8.6030
12 2 5 1 3 10 0.0020 0.0039 0.0099 0.0201 0.0415 1.0917 1.5103 1.9866 2.7080 3.3360
12 2 5 1 3 11 0.0454 0.0656 0.1084 0.1612 0.2449 2.4216 3.1951 4.0591 5.3710 6.4850
12 2 5 1 3 12 0.1943 0.2530 0.3670 0.4948 0.6869 5.1021 6.6523 8.3571 10.9250 13.0820
12 1 5 3 2 11 0.0029 0.0058 0.0144 0.0290 0.0599 1.5118 2.0629 2.6612 3.5390 4.2870
12 1 5 3 2 12 0.0779 0.1127 0.1854 0.2748 0.4171 4.0199 5.2445 6.5640 8.5090 10.1340
12 1 5 2 3 10 0.0019 0.0039 0.0097 0.0197 0.0406 1.0421 1.4301 1.8563 2.4800 3.0230
12 1 5 2 3 11 0.0457 0.0655 0.1075 0.1591 0.2421 2.2986 2.9997 3.7700 4.8970 5.8640
12 1 5 2 3 12 0.1931 0.2515 0.3635 0.4894 0.6793 4.8364 6.2364 7.7662 10.0360 11.9130
12 4 5 1 1 12 0.0060 0.0118 0.0296 0.0602 0.1242 3.2786 4.5590 5.9841 8.1510 9.9870
12 1 5 4 1 12 0.0056 0.0110 0.0281 0.0574 0.1189 2.9757 4.0464 5.2159 6.8860 8.2520

24 2 5 2 2 23 0.0027 0.0054 0.0135 0.0273 0.0559 1.2880 1.7097 2.1454 2.7430 3.2260
24 2 5 2 2 24 0.0745 0.1082 0.1778 0.2620 0.3952 3.3630 4.2547 5.1688 6.4130 7.3970
24 3 5 2 1 24 0.0053 0.0108 0.0269 0.0541 0.1116 2.5742 3.4139 4.2896 5.4990 6.4650
24 3 5 1 2 23 0.0027 0.0053 0.0134 0.0272 0.0556 1.2981 1.7206 2.1574 2.7690 3.2450
24 3 5 1 2 24 0.0759 0.1089 0.1787 0.2629 0.3975 3.3913 4.2958 5.2205 6.5190 7.5110
24 2 5 3 1 24 0.0052 0.0106 0.0267 0.0541 0.1110 2.5640 3.3982 4.2695 5.4600 6.3660
24 2 5 1 3 22 0.0018 0.0036 0.0089 0.0181 0.0373 0.8640 1.1475 1.4400 1.8410 2.1620
24 2 5 1 3 23 0.0433 0.0628 0.1025 0.1509 0.2269 1.8650 2.3396 2.8290 3.4900 4.0090
24 2 5 1 3 24 0.1898 0.2464 0.3525 0.4718 0.6456 3.8774 4.8165 5.7671 7.0730 8.1010
24 1 5 3 2 23 0.0027 0.0053 0.0133 0.0269 0.0554 1.2819 1.6964 2.1241 2.7170 3.1860
24 1 5 3 2 24 0.0753 0.1090 0.1780 0.2624 0.3952 3.3498 4.2332 5.1404 6.3730 7.3140
24 1 5 2 3 22 0.0018 0.0035 0.0089 0.0181 0.0370 0.8582 1.1384 1.4285 1.8280 2.1390
24 1 5 2 3 23 0.0433 0.0625 0.1021 0.1504 0.2260 1.8524 2.3264 2.8057 3.4620 3.9670
24 1 5 2 3 24 0.1898 0.2457 0.3523 0.4698 0.6428 3.8506 4.7665 5.7014 6.9740 7.9950
24 4 5 1 1 24 0.0054 0.0106 0.0269 0.0543 0.1116 2.5943 3.4390 4.3196 5.5450 6.4840
24 1 5 4 1 24 0.0053 0.0106 0.0265 0.0538 0.1104 2.5461 3.3722 4.2239 5.3880 6.2740

5. Conclusion. Since the two-parameter exponential distribution can be better fitting
data than one-parameter exponential distribution, we utilized the GWMEs to construct
a pivotal quantity so that we can build a prediction interval for future observation for
two-parameter exponential distribution based on the pivotal quantity in Theorem 3.1.
For application use, we tabulated the percentiles of proposed pivotal quantity by Monte-
Carlo method in Table 1. At last, we give one real life example to illustrate the proposed
prediction intervals. In the future, this research can be extended to other location scale
family, for example Pareto distributions.
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Table 2. 90% and 95% prediction interval for future observation Y(j), j = 8, . . . , 12

90%
Future

observation
U(0.05; 12, j, 2, 3, 1, 5), U(0.95; 12, j, 2, 3, 1, 5) Prediction interval

Y(8) 0.0129, 1.1162 (117.5768, 252.4400)
Y(9) 0.0923, 2.1646 (127.2824, 380.5925)
Y(10) 0.2321, 3.5346 (144.3710, 548.0561)
Y(11) 0.4503, 5.5985 (171.0430, 800.3394)
Y(12) 0.8401, 9.9343 (218.6906, 1330.3311)
95%

Future
observation

U(0.025; 12, j, 2, 3, 1, 5), U(0.975; 12, j, 2, 3, 1, 5) Prediction interval

Y(8) 0.0063, 1.5150 (116.7701, 301.1878)
Y(9) 0.0622, 2.8567 (123.6031, 465.1922)
Y(10) 0.1714, 4.6035 (136.9513, 678.7143)
Y(11) 0.3475, 7.2547 (158.4771, 1002.7870)
Y(12) 0.6603, 12.8745 (196.7126, 1689.7300)
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